Module openpack_torch.lightning
Expand source code
from logging import getLogger
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import DictConfig
from torchmetrics.functional import accuracy as accuracy_score
logger = getLogger(__name__)
class EarlyStopError(Exception):
pass
class BaseLightningModule(pl.LightningModule):
def __init__(self, cfg: DictConfig = None) -> None:
self.cfg = cfg
super().__init__()
self.net: nn.Module = self.init_model(cfg)
self.criterion: nn.Module = self.init_criterion(cfg)
self.test_step_outputs: List = []
def init_model(self, cfg: DictConfig) -> torch.nn.Module:
raise NotImplementedError()
def init_criterion(self, cfg: DictConfig):
criterion = torch.nn.CrossEntropyLoss()
return criterion
def configure_optimizers(self) -> torch.optim.Optimizer:
# == Optimizer ==
if self.cfg.optimizer.type == "SGD":
logger.info(f"SGD optimizer is selected! (lr={self.cfg.optimizer.lr})")
optimizer = torch.optim.SGD(
self.parameters(),
lr=self.cfg.optimizer.lr,
momentum=self.cfg.optimizer.momentum,
weight_decay=self.cfg.optimizer.weight_decay,
)
elif self.cfg.optimizer.type == "Adam":
logger.info(f"Adam optimizer is selected! (lr={self.cfg.optimizer.lr})")
optimizer = torch.optim.Adam(
self.parameters(),
lr=self.cfg.optimizer.lr,
weight_decay=self.cfg.optimizer.weight_decay,
)
else:
raise ValueError(f"{self.cfg.optimizer.type} is not supported.")
# == LR Scheduler ==
if self.cfg.optimizer.scheduler.type == "None":
logger.info("No scheduler is applied.")
return optimizer
elif self.cfg.optimizer.scheduler.type == "StepLR":
logger.info("StepLR scheduler is selected.")
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size=self.cfg.optimizer.scheduler.step_size,
gamma=self.cfg.optimizer.scheduler.gamma,
)
elif self.cfg.optimizer.scheduler.type == "ExponentialLR":
logger.info("StepLR scheduler is selected.")
scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma=self.cfg.optimizer.scheduler.gamma,
)
elif self.cfg.optimizer.scheduler.type == "CosineAnnealing":
logger.info("CosineAnnealing scheduler is selected.")
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=self.cfg.optimizer.scheduler.CosineAnnealing.T_max,
eta_min=self.cfg.optimizer.scheduler.CosineAnnealing.eta_min,
verbose=True,
)
else:
raise ValueError()
return {"optimizer": optimizer, "lr_scheduler": scheduler}
def calc_accuracy(self, y: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
"""Returns accuracy score.
Args:
y (torch.Tensor): logit tensor. shape=(BATCH, CLASS, TIME), dtype=torch.float
t (torch.Tensor): target tensor. shape=(BATCH, TIME), dtype=torch.long
Returns:
torch.Tensor: _description_
"""
preds = F.softmax(y, dim=1)
(batch_size, num_classes, window_size) = preds.size()
preds_flat = preds.permute(1, 0, 2).reshape(
num_classes, batch_size * window_size
)
t_flat = t.reshape(-1)
# FIXME: I want to use macro average score.
ignore_index = num_classes - 1
acc = accuracy_score(
preds_flat.transpose(0, 1),
t_flat,
task="multiclass",
average="weighted",
num_classes=num_classes,
ignore_index=ignore_index,
)
return acc
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.net(x)
def train_val_common_step(self, batch: Dict, batch_idx: int) -> Dict:
raise NotImplementedError()
def training_step(self, batch: Dict, batch_idx: int) -> Dict:
output = self.train_val_common_step(batch, batch_idx)
train_output = {f"train/{key}": val for key, val in output.items()}
self.log_dict(
train_output,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True,
)
return output
def validation_step(
self, batch: Dict, batch_idx: int, dataloader_idx: int = 0
) -> Dict:
output = self.train_val_common_step(batch, batch_idx)
train_output = {f"val/{key}": val for key, val in output.items()}
self.log_dict(
train_output,
on_step=False,
on_epoch=True,
prog_bar=True,
logger=True,
)
return output
def test_step(self, batch: Dict, batch_idx: int) -> Dict:
raise NotImplementedError()
def on_test_epoch_end(self):
if len(self.test_step_outputs) == 0:
raise ValueError(
"Size of test_step_outputs is 0. Did you forgot to call "
"`self.test_step_outputs.append(outputs)` in test_step()?"
)
outputs = self.test_step_outputs
keys = tuple(outputs[0].keys())
results = {key: [] for key in keys}
for d in outputs:
for key in d.keys():
results[key].append(d[key].cpu().numpy())
for key in keys:
results[key] = np.concatenate(results[key], axis=0)
self.test_results = results
def clear_test_outputs(self):
self.test_step_outputs = []
self.test_results = None
Classes
class BaseLightningModule (cfg: omegaconf.dictconfig.DictConfig = None)
-
Hooks to be used in LightningModule.
Expand source code
class BaseLightningModule(pl.LightningModule): def __init__(self, cfg: DictConfig = None) -> None: self.cfg = cfg super().__init__() self.net: nn.Module = self.init_model(cfg) self.criterion: nn.Module = self.init_criterion(cfg) self.test_step_outputs: List = [] def init_model(self, cfg: DictConfig) -> torch.nn.Module: raise NotImplementedError() def init_criterion(self, cfg: DictConfig): criterion = torch.nn.CrossEntropyLoss() return criterion def configure_optimizers(self) -> torch.optim.Optimizer: # == Optimizer == if self.cfg.optimizer.type == "SGD": logger.info(f"SGD optimizer is selected! (lr={self.cfg.optimizer.lr})") optimizer = torch.optim.SGD( self.parameters(), lr=self.cfg.optimizer.lr, momentum=self.cfg.optimizer.momentum, weight_decay=self.cfg.optimizer.weight_decay, ) elif self.cfg.optimizer.type == "Adam": logger.info(f"Adam optimizer is selected! (lr={self.cfg.optimizer.lr})") optimizer = torch.optim.Adam( self.parameters(), lr=self.cfg.optimizer.lr, weight_decay=self.cfg.optimizer.weight_decay, ) else: raise ValueError(f"{self.cfg.optimizer.type} is not supported.") # == LR Scheduler == if self.cfg.optimizer.scheduler.type == "None": logger.info("No scheduler is applied.") return optimizer elif self.cfg.optimizer.scheduler.type == "StepLR": logger.info("StepLR scheduler is selected.") scheduler = torch.optim.lr_scheduler.StepLR( optimizer, step_size=self.cfg.optimizer.scheduler.step_size, gamma=self.cfg.optimizer.scheduler.gamma, ) elif self.cfg.optimizer.scheduler.type == "ExponentialLR": logger.info("StepLR scheduler is selected.") scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer, gamma=self.cfg.optimizer.scheduler.gamma, ) elif self.cfg.optimizer.scheduler.type == "CosineAnnealing": logger.info("CosineAnnealing scheduler is selected.") scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=self.cfg.optimizer.scheduler.CosineAnnealing.T_max, eta_min=self.cfg.optimizer.scheduler.CosineAnnealing.eta_min, verbose=True, ) else: raise ValueError() return {"optimizer": optimizer, "lr_scheduler": scheduler} def calc_accuracy(self, y: torch.Tensor, t: torch.Tensor) -> torch.Tensor: """Returns accuracy score. Args: y (torch.Tensor): logit tensor. shape=(BATCH, CLASS, TIME), dtype=torch.float t (torch.Tensor): target tensor. shape=(BATCH, TIME), dtype=torch.long Returns: torch.Tensor: _description_ """ preds = F.softmax(y, dim=1) (batch_size, num_classes, window_size) = preds.size() preds_flat = preds.permute(1, 0, 2).reshape( num_classes, batch_size * window_size ) t_flat = t.reshape(-1) # FIXME: I want to use macro average score. ignore_index = num_classes - 1 acc = accuracy_score( preds_flat.transpose(0, 1), t_flat, task="multiclass", average="weighted", num_classes=num_classes, ignore_index=ignore_index, ) return acc def forward(self, x: torch.Tensor) -> torch.Tensor: return self.net(x) def train_val_common_step(self, batch: Dict, batch_idx: int) -> Dict: raise NotImplementedError() def training_step(self, batch: Dict, batch_idx: int) -> Dict: output = self.train_val_common_step(batch, batch_idx) train_output = {f"train/{key}": val for key, val in output.items()} self.log_dict( train_output, on_step=False, on_epoch=True, prog_bar=True, logger=True, ) return output def validation_step( self, batch: Dict, batch_idx: int, dataloader_idx: int = 0 ) -> Dict: output = self.train_val_common_step(batch, batch_idx) train_output = {f"val/{key}": val for key, val in output.items()} self.log_dict( train_output, on_step=False, on_epoch=True, prog_bar=True, logger=True, ) return output def test_step(self, batch: Dict, batch_idx: int) -> Dict: raise NotImplementedError() def on_test_epoch_end(self): if len(self.test_step_outputs) == 0: raise ValueError( "Size of test_step_outputs is 0. Did you forgot to call " "`self.test_step_outputs.append(outputs)` in test_step()?" ) outputs = self.test_step_outputs keys = tuple(outputs[0].keys()) results = {key: [] for key in keys} for d in outputs: for key in d.keys(): results[key].append(d[key].cpu().numpy()) for key in keys: results[key] = np.concatenate(results[key], axis=0) self.test_results = results def clear_test_outputs(self): self.test_step_outputs = [] self.test_results = None
Ancestors
- pytorch_lightning.core.module.LightningModule
- lightning_fabric.utilities.device_dtype_mixin._DeviceDtypeModuleMixin
- pytorch_lightning.core.mixins.hparams_mixin.HyperparametersMixin
- pytorch_lightning.core.hooks.ModelHooks
- pytorch_lightning.core.hooks.DataHooks
- pytorch_lightning.core.hooks.CheckpointHooks
- torch.nn.modules.module.Module
Methods
def calc_accuracy(self, y: torch.Tensor, t: torch.Tensor) ‑> torch.Tensor
-
Returns accuracy score.
Args
y
:torch.Tensor
- logit tensor. shape=(BATCH, CLASS, TIME), dtype=torch.float
t
:torch.Tensor
- target tensor. shape=(BATCH, TIME), dtype=torch.long
Returns
torch.Tensor
- description
Expand source code
def calc_accuracy(self, y: torch.Tensor, t: torch.Tensor) -> torch.Tensor: """Returns accuracy score. Args: y (torch.Tensor): logit tensor. shape=(BATCH, CLASS, TIME), dtype=torch.float t (torch.Tensor): target tensor. shape=(BATCH, TIME), dtype=torch.long Returns: torch.Tensor: _description_ """ preds = F.softmax(y, dim=1) (batch_size, num_classes, window_size) = preds.size() preds_flat = preds.permute(1, 0, 2).reshape( num_classes, batch_size * window_size ) t_flat = t.reshape(-1) # FIXME: I want to use macro average score. ignore_index = num_classes - 1 acc = accuracy_score( preds_flat.transpose(0, 1), t_flat, task="multiclass", average="weighted", num_classes=num_classes, ignore_index=ignore_index, ) return acc
def clear_test_outputs(self)
-
Expand source code
def clear_test_outputs(self): self.test_step_outputs = [] self.test_results = None
def configure_optimizers(self) ‑> torch.optim.optimizer.Optimizer
-
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.
Return
Any of these 6 options.
- Single optimizer.
- List or Tuple of optimizers.
- Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers
(or multiple
lr_scheduler_config
). - Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
. - None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below... code-block:: python
lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # <code>scheduler.step()</code>. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like <code>ReduceLROnPlateau</code> "monitor": "val_loss", # If set to <code>True</code>, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to <code>False</code>, it will only produce a warning "strict": True, # If using the <code>LearningRateMonitor</code> callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as the :class:torch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.Testcode
The ReduceLROnPlateau scheduler requires a monitor
def configure_optimizers(self): optimizer = Adam(…) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, …), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated" # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, }
In the case of two optimizers, only one using the ReduceLROnPlateau scheduler
def configure_optimizers(self): optimizer1 = Adam(…) optimizer2 = SGD(…) scheduler1 = ReduceLROnPlateau(optimizer1, …) scheduler2 = LambdaLR(optimizer2, …) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in your :class:~pytorch_lightning.core.LightningModule
.Note
Some things to know:
- Lightning calls
.backward()
and.step()
automatically in case of automatic optimization. - If a learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default "epoch") in the scheduler configuration, Lightning will call the scheduler's.step()
method automatically in case of automatic optimization. - If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizer. - If you use :class:
torch.optim.LBFGS
, Lightning handles the closure function automatically for you. - If you use multiple optimizers, you will have to switch to 'manual optimization' mode and step them yourself.
- If you need to control how often the optimizer steps, override the :meth:
optimizer_step
hook.
Expand source code
def configure_optimizers(self) -> torch.optim.Optimizer: # == Optimizer == if self.cfg.optimizer.type == "SGD": logger.info(f"SGD optimizer is selected! (lr={self.cfg.optimizer.lr})") optimizer = torch.optim.SGD( self.parameters(), lr=self.cfg.optimizer.lr, momentum=self.cfg.optimizer.momentum, weight_decay=self.cfg.optimizer.weight_decay, ) elif self.cfg.optimizer.type == "Adam": logger.info(f"Adam optimizer is selected! (lr={self.cfg.optimizer.lr})") optimizer = torch.optim.Adam( self.parameters(), lr=self.cfg.optimizer.lr, weight_decay=self.cfg.optimizer.weight_decay, ) else: raise ValueError(f"{self.cfg.optimizer.type} is not supported.") # == LR Scheduler == if self.cfg.optimizer.scheduler.type == "None": logger.info("No scheduler is applied.") return optimizer elif self.cfg.optimizer.scheduler.type == "StepLR": logger.info("StepLR scheduler is selected.") scheduler = torch.optim.lr_scheduler.StepLR( optimizer, step_size=self.cfg.optimizer.scheduler.step_size, gamma=self.cfg.optimizer.scheduler.gamma, ) elif self.cfg.optimizer.scheduler.type == "ExponentialLR": logger.info("StepLR scheduler is selected.") scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer, gamma=self.cfg.optimizer.scheduler.gamma, ) elif self.cfg.optimizer.scheduler.type == "CosineAnnealing": logger.info("CosineAnnealing scheduler is selected.") scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, T_max=self.cfg.optimizer.scheduler.CosineAnnealing.T_max, eta_min=self.cfg.optimizer.scheduler.CosineAnnealing.eta_min, verbose=True, ) else: raise ValueError() return {"optimizer": optimizer, "lr_scheduler": scheduler}
def forward(self, x: torch.Tensor) ‑> torch.Tensor
-
Same as :meth:
torch.nn.Module.forward
.Args
*args
- Whatever you decide to pass into the forward method.
**kwargs
- Keyword arguments are also possible.
Return
Your model's output
Expand source code
def forward(self, x: torch.Tensor) -> torch.Tensor: return self.net(x)
def init_criterion(self, cfg: omegaconf.dictconfig.DictConfig)
-
Expand source code
def init_criterion(self, cfg: DictConfig): criterion = torch.nn.CrossEntropyLoss() return criterion
def init_model(self, cfg: omegaconf.dictconfig.DictConfig) ‑> torch.nn.modules.module.Module
-
Expand source code
def init_model(self, cfg: DictConfig) -> torch.nn.Module: raise NotImplementedError()
def on_test_epoch_end(self)
-
Called in the test loop at the very end of the epoch.
Expand source code
def on_test_epoch_end(self): if len(self.test_step_outputs) == 0: raise ValueError( "Size of test_step_outputs is 0. Did you forgot to call " "`self.test_step_outputs.append(outputs)` in test_step()?" ) outputs = self.test_step_outputs keys = tuple(outputs[0].keys()) results = {key: [] for key in keys} for d in outputs: for key in d.keys(): results[key].append(d[key].cpu().numpy()) for key in keys: results[key] = np.concatenate(results[key], axis=0) self.test_results = results
def test_step(self, batch: Dict, batch_idx: int) ‑> Dict
-
Operates on a single batch of data from the test set. In this step you'd normally generate examples or calculate anything of interest such as accuracy.
Args
batch
- The output of your data iterable, normally a :class:
~torch.utils.data.DataLoader
. batch_idx
- The index of this batch.
dataloader_idx
- The index of the dataloader that produced this batch. (only if multiple dataloaders used)
Return
- :class:
~torch.Tensor
- The loss tensor dict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
.. code-block:: python
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples::
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders, :meth:
test_step
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders... code-block:: python
# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don't need to test you don't need to implement this method.
Note
When the :meth:
test_step
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.Expand source code
def test_step(self, batch: Dict, batch_idx: int) -> Dict: raise NotImplementedError()
def train_val_common_step(self, batch: Dict, batch_idx: int) ‑> Dict
-
Expand source code
def train_val_common_step(self, batch: Dict, batch_idx: int) -> Dict: raise NotImplementedError()
def training_step(self, batch: Dict, batch_idx: int) ‑> Dict
-
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
Args
batch
- The output of your data iterable, normally a :class:
~torch.utils.data.DataLoader
. batch_idx
- The index of this batch.
dataloader_idx
- The index of the dataloader that produced this batch. (only if multiple dataloaders used)
Return
- :class:
~torch.Tensor
- The loss tensor dict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch. This is only supported for automatic optimization. This is not supported for multi-GPU, TPU, IPU, or DeepSpeed.
In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example::
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
To use multiple optimizers, you can switch to 'manual optimization' and control their stepping:
.. code-block:: python
def __init__(self): super().__init__() self.automatic_optimization = False # Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx): opt1, opt2 = self.optimizers() # do training_step with encoder ... opt1.step() # do training_step with decoder ... opt2.step()
Note
When
accumulate_grad_batches
> 1, the loss returned here will be automatically normalized byaccumulate_grad_batches
internally.Expand source code
def training_step(self, batch: Dict, batch_idx: int) -> Dict: output = self.train_val_common_step(batch, batch_idx) train_output = {f"train/{key}": val for key, val in output.items()} self.log_dict( train_output, on_step=False, on_epoch=True, prog_bar=True, logger=True, ) return output
def validation_step(self, batch: Dict, batch_idx: int, dataloader_idx: int = 0) ‑> Dict
-
Operates on a single batch of data from the validation set. In this step you'd might generate examples or calculate anything of interest like accuracy.
Args
batch
- The output of your data iterable, normally a :class:
~torch.utils.data.DataLoader
. batch_idx
- The index of this batch.
dataloader_idx
- The index of the dataloader that produced this batch. (only if multiple dataloaders used)
Return
- :class:
~torch.Tensor
- The loss tensor dict
- A dictionary. Can include any keys, but must include the key'loss'
.None
- Skip to the next batch.
.. code-block:: python
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples::
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders, :meth:
validation_step
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders... code-block:: python
# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don't need to validate you don't need to implement this method.
Note
When the :meth:
validation_step
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.Expand source code
def validation_step( self, batch: Dict, batch_idx: int, dataloader_idx: int = 0 ) -> Dict: output = self.train_val_common_step(batch, batch_idx) train_output = {f"val/{key}": val for key, val in output.items()} self.log_dict( train_output, on_step=False, on_epoch=True, prog_bar=True, logger=True, ) return output
class EarlyStopError (*args, **kwargs)
-
Common base class for all non-exit exceptions.
Expand source code
class EarlyStopError(Exception): pass
Ancestors
- builtins.Exception
- builtins.BaseException